
Component Based Software Reusability and
Framing Standards for Components to be Reused

Anshul Kalia1, Sumesh Sood2
1Research Scholar, Department of Research, Innovation & Consultancy, Punjab Technical University,

 Kapurthala – 144601, India
2Head of Department (Computer Applications), Swami Satyanand College of Management & Technology,

Amritsar – 143001, India

Abstract – Software components play an important role in
achieving reusability. Reusability is in fact an advancement of
component based software engineering. A component acts as a
basic entity while adopting a reuse approach. Reusability puts
a positive impact on reduction of software cost and
improvement of software quality. In order to yield the benefits
of component reusability it is required to have complete
understanding of the activities that are performed while
developing software. A component must be developed using
some standards so that it can be reused. Certain standards are
provided to make a component reusable. A due attention
should also be given to organizational issues concerning the
software reuse such as infrastructure required, legal issues,
incentives etc. Reuse maturity model helps in measuring the
level of reusability in an organization. Cost related issues also
need to be addressed carefully and effectively. The reason is
that monetary issues are a major concern while adopting the
reuse approach.

Keywords – Component based software engineering, Reuse
maturity level, Software reusability, Component standards.

I. INTRODUCTION

Computer software has emerged as a driving force in the
global IT world. It is like an engine that drives us to a
decision or a solution through scientific analysis and
investigation. A huge amount of expansion in the use of
software has been seen. A software is embedded in systems
of all kinds: medical, telecommunication, office
management, military, transportation, industry operations,
administration, research, entertainment etc ……. the list is
almost endless [11]. A software is used by almost everyone
in the world either directly or indirectly because most of the
daily life activities are affected by it. The softwares have
become so user friendly and easy to use that in a manner
they have changed the trends of the industry. The increasing
number of software users are non- experts. As a
consequence of this there is a change of demands on
software.

With the wider area of software reach and change in
demands of users, developing a large and complex system
that should be able to meet time & delivery deadlines,
budget, and quality requirements is not an easy task. But all
these issues can be resolved by using the concept of
software reuse. It is an old as well as a new concept [11].
Reuse of a software component can yield better returns in
the form of monetary, reliability, quality, time – to – market
etc.

A marketplace for software components is emerging.
Component based development can be addressed as a
subset and also as an extension of software engineering
practices. The idea behind the component based software
engineering is to satisfy the development needs of the
system by taking it as an assembly of subsystems of a
system. The subsystems (components) involved in
developing a system must be able to be treated as a reusable
entities [4]. By building systems out of carefully designed,
pre-tested components, one will save the cost of designing,
writing and testing new code. The idea of software reuse
seems to be simple but in practice, there are several aspects
like organizational, economical, technical and operational
that needs to be overcome.

II. LITERATURE REVIEW

McIlroy [1968] first envisioned Software reuse, at a NATO
Software Engineering Conference, where he predicted that
mass-produced components would end the software crisis
[7]. The final objective was very clear: to make something
once and to reuse it several times.

Frakes and Terry [1996] – was first person to propose
metric and models on software reuse. He suggested models
based on cost benefits, assessing the maturity level, reuse
library metrics [9].

Kim [2005] takes – on the issue of component based
software reuse. It discusses the difficulties in realizing the
component based software reuse and to discuss the pre –
conditions required to meet before practicing software reuse
on a wide scale in a formalized manner [8].

Sharma et. al [2007] discusses about managing
component – based systems with reusable components. It
discusses the reusability concepts for components based
systems and to explore the reusability metrics to measure
reusability directly or indirectly [13].

Anas al – badareen [2011] proposed a framework that
contains the extraction, adoption and storage of reusable
software components [1].

Gupta and Kumar [2013] conducted a study about
reusable software component retrieval system. The study
discusses the techniques for storage and retrieval of
software components which can be reused [6].

Anshul Kalia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1459-1462

www.ijcsit.com 1459

III. COMPONENT BASED SOFTWARE ENGINEERING AND

REUSABILITY

In component based software engineering approach, the
emphasis on components is more. A component can be
treated or defined as an independent system that
accomplishes a specific task. A component also can be
composed of several other components. More specifically
software components are prebuilt items that act as a
building block in a software to perform specific functions.
These components can communicate with each other using
standard interface. After the strengthening of component
based software engineering practices, the idea of software
reuse has evolved more significantly. In fact component
based software engineering is a process that emphasized the
designing and construction of software using reusable
software components [11].

Reusability shifts focus from programming software to
composing software system [11]. There lies many
advantages of component reuse like reduced development
time and cost, the quality and productivity will also be
increased as the pre tested components are being used. But
the developers could not yield much benefit from it. There
may be several reasons for that but the lack of proper
definition for the components which is to be reused can be
the one reason. The non availability of an established
definition for a component can also create confusion and
misconception among the developers. It can be explained
with an example: you purchase a stereo system and bring it
home. We can fit many components like speakers,
earphones etc. into it. Each of these components has been
designed to fit a specific architectural style, the connections
between components are standardized, and communication
protocols have been pre-established. Assembly of such
components is easy than to build a system from hundred of
discrete parts. This is what we need to achieve [11]. A
component must be designed in such a way that it should be
able to

a) Integrate and communicate with other components
in the same system easily.

b) Integrate and communicate with other components
outside the system but within same domain.

c) Also it should integrate and communicate with
applications outside the domain.

There are several questions about component reusability
which are still unanswered, such as, can a large system be
built by composing the reusable components, will it be
possible to find the components that already exists, how the
library of components can be created and made accessible
[11], how the incentives will flow to the developer of a
component. There is a need for new methodologies and tool
support that favours the design, development and
maintenance of reusable software components.

IV. ORGANIZATIONAL ISSUES ASSOCIATED WITH

SOFTWARE REUSE

Today the organizations are always under pressure for the
timely delivery of software product to market, to reduce the

development and maintenance cost and to increase the
quality of the product. To meet all these deadlines and
requirements, industry is shifting largely to software reuse
[5]. Software reuse can play a significant role in achieving
market deadlines, cost saving, increasing productivity and
quality assurance. The two steps have been prescribed to
start with reuse process in the organization.

A. Initiation of Reuse Process

The first step that is to be initiated by a software
development organization is the assessment of software
reuse [4]. Software reuse assessment is performed in an
organization to measure the potential for practicing reuse. It
is vital in determining that whether the organization is
ready to take on the reuse program or not, also it defines for
the organization to where to focus its reuse efforts in order
to gain maximum benefits from reuse practices. The
resultant information obtained from reuse assessment can
be used as a basis for defining organization’s reuse goals,
strategies for reuse adoption, the domains in which to
practice reuse and the reuse implementation plan [4].

Reuse assessment helps in successfully introducing
reuse into software development organizations. The
objectives of reuse assessment are:

 To analyze and evaluate the organizations current
reuse policy and implementation of that policy in
current software projects.

 To find the organizations reuse goals,
identification of elements of reuse program to
achieve these goals.

 To determine the area of domain towards which
the reuse efforts can be directed to obtain
maximum benefit.

 It provides the course of actions to be taken to
implement the reuse policy.

Institutionalizing the reuse practices in a large
organization is a complex task. For successful
implementation of reuse practices in an organization, the
organization needs to introspect that how ready, willing it is
to adopt the reuse development approach, what steps it
needs to take to prepare it to achieve reuse goals. The
assessment include following issues [5]:

 Identification of personnel support required for
implementation of reuse program.

 Establishment of infrastructure for reuse i.e. reuse
incentives, reuse corporate policy.

 Business value of a reuse program.
 Role of management in reuse program.

B. Measure of Reuse Activities in an Organization

Reuse maturity is a measure which is used to determine
the effectiveness of reuse activities in an organization [12].
By evaluating the maturity of reuse in the organization we
determine the level of activities, and accordingly it can be
increased if required.

Anshul Kalia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1459-1462

www.ijcsit.com 1460

A five level maturity model has been proposed by
Koltun and Hudson [12]. In this model, the discrimination
among the levels is created considering motivation,
planning for reuse, breadth of reuse, responsibility of
making reuse happen, process by which reuse is leveraged,
reuse inventory, technical support, metrics and legal
considerations. The five levels in model are initial,
monitored, coordinated, planned and ingrained. Table 1
gives the overview of various characteristics of maturity
model [12].

TABLE 1
CHARACTERISTICS OF REUSE MATURITY LEVELS

Level Characteristics

1. Initial Short term thinking
Reuse costs are feared
Resistance to reuse
Individualized reuse i.e. uncoordinated,
unmonitored

2. Monitored Managerial awareness
Reuse costs are known
Little active promotion of reuse
Individual achievements

3. Coordinated Organizational responsibility
Domain analyses for product line
Reuse tactics
Payoff of reuse is known
Component standardization

4. Planned Life cycle view of reuse
Reports of reuse costs and savings
Reuse is supported and encouraged
Reuse across all functional areas

5. Ingrained Corporation wide view
Reuse is regular business
Domain analyses across all product lines
Corporation wide definitions, guidelines,
standards

The reuse maturity model can be used as an assessment
tool that can be used to measure an organizations maturity
of reuse processes against a set of characteristics that are
specified at each of the maturity level. The more mature are
the reuse processes, the more likely an organization is to
produce software products on time, on budget and on to the
specified quality. The reuse maturity model can also be
used by the organizations for raising the maturity of their
reuse processes and to determine the practices that will
actually increase the maturity of their currently running
reuse processes [5].

V. STANDARDIZING COMPONENTS TO BE REUSED

Reusing of a component requires a set of standards in order
to clearly define the reusable components. Standards
provide the framework for the components to be developed.
The components so developed can fit easily into the
software systems that are to be developed using reusable
components. Also the developers should be able to
understand the components quickly and easily. By using a

set of standards a component can be made reusable. The
cost of making a component reusable must be taken into
account while conducting a cost benefit analysis. The
following are the certain points which are useful in
standardizing components:

1. For a component to be reused it must have an
interface and it should be consistent.

2. The functionality of a component must be defined.
3. The designing of a component must satisfy a

specific style of architecture.
4. A component must have industry defined

communication protocols that enables it to
communicate with other components in same
application, outside the application but within
same domain, outside the domain.

5. Run time requirements (i.e. memory, storage
space), time and speed, network protocols must be
defined.

6. For integration with other components a
component must have an application programming
interface.

7. A component must also be able to define that how
it will navigate to a database to create, edit, delete
and to perform other operations as instructed by
the end user.

8. It also requires data exchange mechanisms that
enable users and other applications to interact and
transfer data i.e. cut, paste, drag, drop etc.

9. Security features including access controls and
authentication protocols should also be defined.

10. It must have the ability to handle errors and
exceptions.

The points raised above will surely be helpful in
component definition. It will make the process of
understanding and integrating components fast. The
components that should be developed using above said
standards can be adopted easily and quickly into the system
to be developed. It should be much like assembling a stereo
system as we specified in the example given in section 3. In
case of software systems it is the pre – developed
components within the prescribed frame of standards that
are assembled to generate a system as a whole.

A. Benefits of standardizing components

There can be several benefits of standardizing
components. Some of them are listed below:

1. It is useful in achieving forward and backward
compatibility of the components with the hardware
and software.

2. It will be easy to adopt and integrate the
standardized components into the system to be
developed.

3. Understanding and utilizing such components will
be cheaper and less time consuming.

Anshul Kalia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1459-1462

www.ijcsit.com 1461

4. There will be an increased reliability and quality of
the system under development using standardized
components.

5. Also the maintenance of such components and
systems developed using such components will be
cheaper and less time consuming.

VI. COST BENEFIT ANALYSIS

Before directly jumping to the idea of reuse the
organizations must perform the cost benefit analysis, which
will be helpful for them to determine whether the reuse
approach will yield significant returns on the investment
made on it. If the cost of reuse exceeds or equal to the
actual development cost, then there is no point of taking
reuse path. The cost of software reuse need to be justified
with the benefits expected [4]. Only then it becomes
feasible to adopt the reuse approach for software
development. Cost benefit analysis alone cannot be the
criteria for reuse but it can be one of those. The analysis
follows an economic model which involves producers,
consumers and the distribution chain. While calculating
benefits of reuse everyone of these is taken into account.

The net savings can be obtained as below [4]:

Csave = Cs – Cr – Cd

Where Cs – is the cost of project developed from scratch

 Cr – is the overhead costs associated with reuse

 Cd – is the actual cost of the software as delivered

The cost of project developed from scratch can be
determined by various estimation techniques. Now, the
overhead costs associated with software reuse include [4]:

 Training of personnel in design for reuse and
design with reuse

 Creation and operation of a reuse repository
 Royalties and license costs of externally acquired

components
 Maintenance and updating of reuse components
 Increased documentation to facilitate reuse
 Converting a component into a standard

component for reuse

Cd will include project related reuse costs, such as the
adaptation and integration of reuse components.

The cost related benefits can further be classified into two:

 The producer, a creator of reusable component
 The consumer, a user of these components for the

creation of other software

It is not sure that developing a component for reuse will
always be beneficial for the producer, it may or may not be
cost effective for the producer but may produce benefits for
the user. Producer costs include the cost involved from
creation to maintenance of a reuse program [4]. The costs

here refer to the whole life cycle cost of a component i.e.
analysis, designing, coding, testing, debugging, maintaining
[5]. As it will take more time for the producer to make a
component reusable which will increase the cost, but on the
other hand, it will take less time for user to adapt and
integrate which in turn serves as cost effectiveness for a
user and a costly affair for the producer.

VII. CONCLUSION

Existing software or a software component can be reused to
produce a new system without actually producing it. It can
be a composition rather than the production. This paper
highlights the issues which are primarily need to be
addressed for the start of the reuse process. It also exhibits
the importance of organizational issues which may not be
given the due attention. A set of standards for components
to be reused have been outlined, it will be beneficial in such
a way that production, selection, adaptation, integration of
components will become easier. Reduction in costs and
time – to – market has always been an issue for the software
industry. Industries desperately need a shift to software
reuse. Thus software reuse will bring the improvements in
productivity, quality and reliability of the software.

REFERENCES

[1] Al – Badareen A., Selamat M.H., Jabar M.A., “Reusable Software
Component Lifecycle”, International Journal of Computers, 5(2), pp.
191 – 199, 2011.

[2] Crnkovic I., “Component Based Software Engineering – New
Challenges in Software Development”, Software Focus, 2(4), pp. 127
– 133, 2001.

[3] Frakes W.; Terry C., “Software Reuse: metrics and models”, ACM
Computing Surveys, 28(2), ISSN: 0360-0300, pp. 415 – 435, 1996.

[4] Gill N.S., “Reusability Issues in Component-Based Development”,
ACM SIGSOFT Software Engineering Notes, 28(4), ISSN: 0163-
5948, pp. 1-4, 2003.

[5] Gill N.S., Software Engineering, New Delhi: Khanna Book
Publishing Company, ISBN: 978-81906116-3-3, 2009.

[6] Gupta S., Kumar A., “Reusable Software Component Retrieval
System”, International Journal of Application or Innovation in
Engineering and Management, 2[1], pp. 187 – 194, 2013.

[7] Imeri F.; Antovski L., “An Analytical View on the Software Reuse”,
ICT Innovations 2012, Web Proceedings of the 4th ICT – ACT
Conference, Ohrid - Macedonia, ISSN: 1857 – 7288, pp. 213 – 222,
2012.

[8] Kim W., “On Issues with Component – Based Software Reuse”,
Journal of Object Technology, 4[7], pp. 45 – 50, 2005.

[9] McIlroy M.D., “Mass Produced Software Components”, Software
Engineering: Report on a Conference by the NATO Science
Committee, Brussels, pp. 138 – 155, 1968.

[10] Morisio M.; Ezran M.; Tully C., “Success and failure factors in
software reuse”, IEEE Transactions on Software Engineering, 28(4),
ISSN: 0098-5589, pp. 340–357, 2002.

[11] Pressman R.S., Software Engineering – A Practitioner’s Approach,
5th ed. New York: McGraw-Hill Inc., ISBN: 0073655783, 2001.

[12] Sametinger J., Software Engineering with Reusable Components,
Springer-Verlag, New York, USA, ISBN: 3-540-62695-6, 1997.

[13] Sharma A., Kumar R., Grover P., “Managing Component – Based
Systems with Reusable Components”, International Journal of
Computer Science and Security, 1[2], pp. 60 – 65, 2007.

[14] Wentzel K.D., “Software Reuse – Facts and Myths”, ICSE ’94
Proceedings of the 16th international conference on Software
Engineering, ISBN: 0-8186-5855-X, pp. 267-268, 1994.

Anshul Kalia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1459-1462

www.ijcsit.com 1462

